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Latent Dirichlet Allocation in
Scala Part II - The Code  

Word2Vec Tutorial Part II: The
Continuous Bag-of-Words Model

In the previous post the concept of word vectors was explained as was the
derivation of the skip-gram model. In this post we will explore the other Word2Vec
model - the continuous bag-of-words (CBOW) model. If you understand the skip-
gram model then the CBOW model should be quite straight-forward because in
many ways they are mirror images of each other. For instance, if you look at the
model diagram
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it looks like the skip-gram model with the inputs and outputs reversed. The input
layer consists of the one-hot encoded input context words  for a word
window of size  and vocabulary of size . The hidden layer is an N-dimensional
vector . Finally, the output layer is output word  in the training example which is
also one-hot encoded. The one-hot encoded input vectors are connected to the
hidden layer via a  weight matrix  and the hidden layer is connected to
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the output layer via a  wieght matrix .

Forward Propagation
We must first understand how the output is computed from the input (i.e. forward
propagation). The following assumes that we know the input and output weight
matrices (I will explain how these are actually learned in the next section). The first
step is to evaluate the output of the hidden layer . This is computed by

which is the average of the input vectors weighted by the matrix . It is worth
noting that this hidden layer output computation is one of the only differences
between the continuous bag-of-words model and the skip-gram model (in terms of
them being mirror images of course). Next we compute the inputs to each node in
the output layer

where  is the  column of the output matrix . And finally we compute the
output of the output layer. The output  is obtained by passing the input 
throught the soft-max function.

Now that we know how forward propagation works we can learn the weight matrices
 and .

Learning the Weight Matrices with
Backpropagation
In the process of learning the wieght matrices  and , we begin with randomly
initialized values. We then sequentially feed training examples into our model and
observe the error which is some function of the difference between the expected
output and the actual output. We then compute the gradient of this error with
respect to the elements of both weight matrices and correct them in the direction of
this gradient. This general optimization procedure is known as stochastic gradient
descent (or sgd) but the method by which the gradients are derived is known as
backpropagation.
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backpropagation.

The first step is to define the loss function. The objective is to maximize the
conditional probability of the output word given the input context, therefore our
loss function will be

Where  is the index of the the actual output word. The next step is to derive the
update equation for the hidden-output layer weights , then derive the weights
for the input-hidden layer weights 

Updating the hidden-output layer weights
The first step is to compute the derivative of the loss function  with respect to the
input to the  node in the output layer .

where  if  otherwise . This is simply the prediction error of node 
 in the output layer. Next we take the derivative of  with respect to the output

weight  using the chain rule.

Now that we have the gradient with respect to an arbitrary output weight , we
can define the stochastic gradient descent equation.
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where  is the learning rate.

Updating the input-hidden layer weights
Now let's try to derive a similar update equation for the input weights . The first
step is to compute the derivative of  with respect to an arbitrary hidden node 
(again using the chain rule).

where the sum is do to the fact that the hidden layer node  is connected to each
node of the output layer and therefore each prediction error must be incorporated.
The next step is to compute the derivative of  with respect to an arbitrary input
weight .

Where  is an N-dimensional vector of elements  from 
. However, since the inputs  are one-hot encoded, only one row of

the  matrix  will be nonzero. Thus the final stochastic gradient
descent equation for the input weights is

where  is the  word in the input context.
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